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EVALUATION OF HYBRID COMPOSITE MATERIALS " iL. IN CYLINDRICAL SPECIMEN GEOMETRIES* .... i

ABSTRACT
!

The objective of this program was to determine static i

and fatigue properties of three composite materials and hybrids I

thereof with edgeless cylindrical specimens. The materials

investigated were graphite/epoxy, S-glass/epoxy, PRD-49 (Kevlar 49)/ _

epoxy and hybrids in angle-ply configurations, mainly [+45/02] s.

A new type of edgeless cylindrical specimen was _eveloped. It i
is a flattened tube with two flat sides connected by curved

sections and it is handled much like the standard flat coupon.

_ Special specimen fabrication, tabbing and tab region reinforcing _ _

techniques were developed. Axial modulus, Poisson's ratio, ,.

strength and ultimate strain'were obtained under static loading from

flattened tube specimens of nine laminate configurations. In a
C

few cases these results were compared with those of corresponding ;i

i flat coupon specimens. In the case of graphite/epoxy the tubular!_ specimens appeared to yield somewhat higher strength and ultimate

i strain values than flat specimens. Tensile fatigue tests were<_ conducted with all nine types of specimens and S-N curves obtained, i

Although no direct comparison was made with the flat coupons ii _i

indications are that in some cases results from tubular specimens _

are better than might be expected from flat coupons. Specimens _ _ii

surviving 107 cycles of tensile loading were subsequently tested ,_ _

statically to failure to determine residual properties. No i _.i_,

stiffness or strength degradation was indicated. _i _I

*The contract research effort which has led to the results i
in this report was financially supported by USAA_RDL !
(Langley Directorate) !

liT RESEARCH INSTITUTE

iii i

1976020273-003



:._......... . j_.................... t ,,_ ;_

TABLE OF CONTENTS '_

SECTION PAGE

!_ I.0 INTRODUCTION i

! 2.0 THE FLATTENED TUBULAR SPECIMEN 3
!'i
i
_ 2.1 Specimen Configuration 3

2.2 Fabrication Technique for Flattened
_ Composite Tubes 3
& 2.3 Specimen Loading Tab3 9

2.4 Reinforcing Techniques iiL

i_ 3.0 TEST PROGRAM 15

i : 3 1 Materials and Specimens 15
i

_ _ 3.2 Instrumentation and Testing 17
i •

i i 4.0 RESULTS AND EVALUATION 19 ,4.1 Static Tests 19 1

'_ 4.2 Fatigue Tests 70 !r & 4.3 Residual Propezties 84 r_

_ 5.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 91FOR FUTURE WORK

REFERENCES 94

I DISTRIBUTION LIST 95

p

: liT RESEARCH INSTITUTE

'

1976020273-004



LIST OF FIGURES

FIGURE PAGE

I Dimensions of Flattened Composite Tubular
Specimen 4

& 2 Flattened Tube Specimen Molding Tool
(Exploded View) 7

3 Flattened Tube Specimen Molding Tool
(Assembly) 8

4 End Tabs and Inserts Used in Tabbing the
$ Specimen I0

5 Assembled Snecimen and Tab Sections 12 I

6 Two Tab Reinforcing Techniques 14
(6a) Overdraped Reinforced Tab

(6b) Underdraped Reinforced Tab Region
7 Flattened Tube Specimens of [+45/0]s HT

Graphlte/Epoxy After Failure Under
Uniaxial Tension 20

8 Strains in Uniaxially Loaded Flattened

Tube of [+_45/0]s HT Graphite/Epoxy 21
9 Strains in Uniaxially Loaded Flattened Tube

of [+_45/0]s HT Graphlte/Epoxy 22

10 Strains in Uniaxially Loaded Flat Coupon of
[_45/0] s HT Graphite/Epoxy 23

ii Strains in Uniaxially Loaded Flat Coupon of
[_45/0]s HT Graphite/Epoxy 24

12 Typical Failure Modes of Flattened Tubular
Specimens 29

13 Failure Modes of Flattened Tubular Specimens
of S-Glass/Epoxy and PRD-49-111/Epoxy 30

14 Strains in Uniaxially Loaded Flattaned Tube
of [_45/02]s S-Glass/Epoxy 31

15 Strains in Uniaxially Loaded Flattened Tube
of [+_45/02]s S-Glass/Epoxy 32

I 16 Strains in Uniaxlally Loaded Flattened Tube
of [±45/02] s S-Glass/Epoxy 33

17 Strains in Uniaxlally Loaded Flat Coupon of
[_45/02]s S-Glass/Epoxy 35

18 Strains in Unlaxially Loaded Flat Coupon of
P [_45/02]s S-Glass/Epoxy 36

liT RESEARCH INSTITUTE

D

1976020273-005



._L_I_:__ ...... _r_ _ ..... ..................... "_..... ..... _, ...................... * ........ _ '_ b_

_:

L i, _. LIST OF FIGURES (Cont'd)

_i_ FIGURE PAGE
hl

%

19 Strains in Uniaxially Loaded Flattened Tube of
_ [±45/02]s PRD-49/Epoxy 38

20 Strains in Uniaxlally Loaded Flattened Tube of
[+_45/02]s PRD-49/Epoxy 39

21 Strains in Unixially Loaded Flattened Tube of
[_45/02]s PRD-49/Epoxy 40

22 Strains in Uniaxially Loaded Flat Coupon of
[_45/02]s PRD-49/Epoxy 41

23 Strains in Uniaxially Loaded Flat Coupon of
[_45/02]s PRD-49/Epoxy 42

¢ 24 Strains in Uniaxially Loaded Flattened Tube

,_ of [+_45/02]s Graphite/Epoxy 44

25 Strains in Uniaxially Loaded Flattened Tube of

'I [+45/02]s- Graphite/Epoxy 45

26 Strains in Uniaxially Loaded Flattened Tube of
[+45/02]s Graphite/Epoxy 46

_ 27 Strains in Uniaxially Loaded Flat Coupon of
! [_45/02]s Graphite/Epoxy 47

28 Strains in Unlaxially Loaded Flat Coupon of
[+45/02] s Graphite/Epoxy 48

29 Strains in Uniaxially Loaded Flattened Tube
of [_45C/0G]s Graphite/S-Glass/Epoxy 50

_ 30 Strains in Uniaxially Loaded Flattened Tube<
_ of [_45C/0G] s Graphite/S-Glass/Epoxy 51

_ 31 Strains in Uniaxially Loaded Flattened Tube
_ of [_45C/0G] s Graphite/S-Glass/Epoxy 52

_ _,_ 32 Strains in Uniaxially Loaded Flattened Tube

" of [_45C/02G]s Graphite/S-Glass/Epoxy 53

it 33 Strains_in _niaxially Loaded Flattened Tube
i,_ of [+_45C/02 ]s Graphite/S-Glass/Epoxy 54

34 Strains_in Uniaxially Loaded Flattened Tube
of r_45c/02G]s Graphlte/S-Glass/Epoxy 55

!!_ 35 Strains _n U_iaxially Loaded Flattened Tube
ii of [_452 /02_]s PRD-49/S-Glass/Epoxy 57

liT RESEARCH INSTITUTE

vi

,I

1976020273-006



!

/ !
i ,,

: 1:'

LIST OF FIGURES

FIGURE PAGE

_ .... 36 Strains in Uniaxially Loaded Flattened Tube
of [_45P/02G]s PRD-49/S-Glass/Epoxy 58

37 Strains in Uniaxially Loaded Flattened Tube
of [_45P/02G]s PRD-49/S-Glass/Epoxy 59

38 Strainspin _niaxially Loaded Flattened Tube
_ of [+_45 /04 ]s PRD-49/S-Glass/Epoxy 60

39 Strainspin _niaxially Loaded Flattened Tube
of [+_45 /04 ]s PRD-49/S-Glass/Epoxy 61

40 Strains in Uniaxlally •Loaded Flattened Tube
of"[+_45P/04G]s PRD-49/S-Glass/Epoxy 62

41 Strains in Uniaxially Loaded Flattened Tube
_ of [+-45C/0P]s HT-Graphite/PRD-_9/Epoxy 64

I 42 Strains in Uniaxially Loaded Flattened Tube
of L_45C/0P]s HT-Graphite/PRD-49/Epoxy 65

" 43 Strains in Uniaxially Loaded Flattened Tube
_<- of [_45C/0P]s HT-Graphite/PRD-49/Epoxy 66

! 44- Strains in Uniaxially Loadeu Flattened Tube
of [_45C/02P]s HT-Graphite/PRD-49/Epoxy 67

45 Strains in Uniaxially Loaded Flattened Tube
_! of [_45C/02P]s HT-Graphite/PRD-49/Epoxy 68

46 Strainscin _niaxially Loaded Flattened Tube
! of [±45 /02 ]s HT-Graphite/PRD-49/Epoxy 69

_i 47 Tensile Cycling Fatigue Strength of Flattened
Tube Specimens of [+45/02] s S-Glass/Epoxy 73

_ 48 Tensile Cycling Fatigue Strength of Fla=tened
". Tube Specimens of [+_45/02]s PRD-III/Ep_xy 74

49 Tensile Cycling Fatigue Strength of Flattened

' Tube Specimens of [+_45/02]s HT-Graphite/Epoxy 75

50 Tensile Cycling Fatigu_ S_rength of Fla:tened
*_=,_ Tube Specimens of [+45u/0_]s HT-Graphit_/

S-Glass/Epoxy - 76
51 Tensile Cycling Fatigue Strength of Flattened

Tube Specimens of [_45C/02G]s HT-Graphite/
S-Glass/Epoxy 77

|

liT RESEARCH INSTITUTE

_ _ vii..... , ,,, ,,,,, , i i i i, i i - _ I I ............. _L_............ .LL......................... I

97020273-007



J_

il_ LIST OF FIGURES (Cont'd)

_i FIGURE PAGE

_ _ 52 Tensile Cycling Fatigue Strength of Flattened
Tube Specimens of [+_45P/02G]s PRD-49/S-Glass/ 78

_ Epoxy

_ 53 Tensile Cycling Fatigue Strength of Flattened
_, Tube Specimens of [+45P/04 ]s PRD-49/S-Glass/ 79

Epoxy

54 Tensile Cycling Fatigue Strength of Flattened
:_ Tube Specimens of [+45C/0P] s HT-Graphite/

PRD-49/Epoxy 80

55 Tensile Cycling Fatigue Strength of Flattened

! _,, Tube Specimens of [+45C/02P]s HT-Graphite/
i_ PRD-49/Epoxy 81

i_. 56 Strains in Uniaxially Loaded Flattened Tube

,_ of [+45/02] s Graphite/Epoxy After.Surviving
107 _ycles of Tensile Cycling Fatlgue to

i 540 MPa (78.3 ksi) 86

57 Strains in Uniaxially Loaded Flattened Tube of
• [+45c/0G] S Graphite/S-Glass/Epoxy After

Surviving i0/ Cycles of Tensile Cycling Fatigue
"_> to 133 MPa (19.2 ksi) 87

58 Strains in Uniaxially Loaded Flattened Tube
_._ of [+45C/0oG] Graphite/S-Glass/Epoxy After

Surviving 107 Cycles of Tensile Cycling
Fatigue to 155 MPa (22.5 ksi) 88

i. 59 Strains in Uniaxially Loaded Flattened Tube of _,
[+45C/0P] s HT-Graphite/PRD-49/Epoxy After

_ _ Surviving I0 / Cycles of Tensile Cycling I

Fatigue to 259 MPa (37.6 ksi) 89

lit RESEARCH iNSTITUTE i_



i:r=_" _*'_""_ _.............T_ '*'_'_•'_-'-',_'_'_'"_'_'_"_7_+_'z_T__ _r_¸r_.: _'_'_. _ !__C ...... ..... . . ,•-,'_,____*_, '

p_

D

LIST OF TABLES 1

_ TABLE PAGE

I Test Program 16

2 Results of Static Tensile Tests of Flattened

il_; Tubular Specimens 25

i '!! 3 Results of Static Tensile Tests of Flat

Coupons 28

_: 4 Results of Tensile Cycling Fatigue Tests of

! Flattened Tubular Specimens 71

!i,

5 Residual Properties of Flattened Tubular
Specimens Which Survived 107 Cycles of

i Tensile Cycling Fatigue 85

i

i,i

-- _" liT RESEARCH INSTITUTE

_ ix

' _1_

] 976020273-009



i
IITRI Final Report No. D6089

EVALUATION OF HYBRID COMPOSITE MATERIALS

IN CYLINDRICAL SPECIMEN GEOMETRIES

1.0 INTRODUCTION

It has been observed that fatigue failures in composite

materials are preceded by material degradation corresponding to

a reduction in residual stiffness. 1 Stiffness variations in

dynamically tuned structures can produce resonance resulting in

catastrophic failures. It is not certain that the indicated

stiffness degradation is a true material response or attributable

to specimen geometry.

Static and fatigue tensile properties of composite
laminates are normally evaluated by testing flat coupons. It

has been shown analytically 2'3 and verified experlmentally 4'5

that significant interlaminar stress components exist near free

edges in uniaxially loaded laminates. These stresses are

restricted to a region near the edge approximately equal to the

laminate thlcknes_. The state of stress in the interior regions

of the laminate was found to be accurately predicted by the plane

stress relations of laminated plate theory. It is hypothesized

that damage is initiated at the edges of these flat specimens

and propagates toward the interior. This damage propagation

mechanism may be more pronounced under cyclic than under static

loading.

To eliminate the influence of these edge effects in the

determination of tensile properties of composites one must

eliminate the edges by making an edgeless specimen. The most

common edgeless specimen is the circular cylindrical specimen. ;__

It has been demonstrated that laminated tubular specimens can be

manufactured with properties _dentical to those of flat laminates.

Atttempts to conduct valid uniaxial tests with round tubular

liT RESEARCH INSTITUTE
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_,_'i_:_ ,'*,__,_ _-_:, ,r__,-.........._,..,. _,_............_.....................................................................-..........................._ __.___ i_

I i_!__ specimens have been unsuccessful because of the differential
_ Poisson effect between the test section and the grips. This

_: problem has been particularly more difficult under cyclic

_,i loading which is more sensitive to stress discontinuities.

i A new type of edgeless cylindrical specimen was

developed at IITRI under the present contract with NASA-Langley

; Research Center. It is a flattened tube with two flat sides

_& connected by curved sections and it can be handled much like

_i the standard flat coupon. The present report describes the

_ initial development, fabrication, testing and evaluation of this
_i!_

_, type of specimen. The specimens were composite angle-ply

:__ laminates of graphite/epoxy, S-glass�epoxy, PRD-49 (Kevlar 49/

L

I
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2.0 THE FLATTENED TUBULAR SPECIMEN

!_ 2. Specimen ConfiRuration

i

_ The geometric configuration and nominal dimensions of

the flattened tubular specimen are shown in Fig. i. The

specimen is 22.9 cm (9 in.) long, 2.3 c'a (0.90 in.) wide, with

3.80 cm (1.5 in.) long and 2.54 cm (1 in.) wide fiberglass

tabs and inserts at each end. These are essentially the same

dimensions as used for flat composite specimens. The thickness

of the flattened tube shown in Fig. I, (0.58 cm; 0.23 in.) is

only a typical one. It varies with the number of plies in the

laminate and the ply thickness of the material used.

The cross sectional area A _f the specimen is determined

by the formula

A ffi(c--_t)t (1)

where G ffithe specimen girth (outer circumference)

_ t - laminate thickness

The girth is readily measured with satisfactory accuracy

by wrapping a single strip of _aper around the specimen and

marking the length of a single wrap.

2.2 Fabrication Technique for Flattened Composite Tubes

The development of a successful fabrication technique

i'orflattened _ubular specimens required substantial effort.

Many promising approaches were pursued but most failed to produce

specimens of consistent and satisfactory quality. The approach

which was finally selected is described below.

liT RESEARCH INSTITUTE
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• +

i The fabrication starts by rolling the prepreg plies

_: around a rod mandrel and subsequently shaping the circular

tube into the flattened shape by use of a special molding tool

and process. The material for the tube is cut from prepreg

i _- tape into single-ply strips somewhat longer than the final tube

i length. The fiber orientation of these strips is parallel toi
_ __ _ the strip length.

_, The tube layup is done on a 1.27 cm (0.5 in.) diameter

aluminum mandrel which is sprayed with mold release to prevent

the first ply from sticking to it. The first ply is rolled directly

_ onto the mandrel. Subsequent plies are each rolled on top of

i'!- the preceeding one. Strips where fiber orientation is to be

!,i parallel to the tube axis are rolled on with their edges bntting

I_ against each other and parallel to the mandrel axis. Strips

i whose fiber orientation is to be 45 degrees to the tube axis are

.. rolled in a spiral fashion at a 45-degree angle to the mandrel

axis. The edges are butted against each other during this

i eperation. During the layup phase short lengths of reinforcing

i plies may be inserted at both ends of the tube between the tube
plies. They serve subsequently to reinforce the transition area

between the specimen gripping tabs and test section. After the

,, prepreg laminate tube is layed up the alumlnummandrel is with-

drawn and replaced with a silicone rubber tube of 0.95 cm (3/8 in.)

_,! _ inside diame=er and 0.08 cm (0.030 in.) wall thickness, used for

_ ! internal pressurization of the specimen during the curing process.

_ _ To prepare for the curing process the specimen is over-

_ "_ I: wrapped with one layer of separator cloth (Emfab TXI040 Teflon

i _< treated 104 fiberglass cloth). The separator cloth is spirally

i: _ overwrapped with strips of paper bleeder (Mochburg CW1850 glass

_ fiber paper); one layer of bleeder for each 2 plies of specimen.

i_ _ The specimen is then partially flattened between two plates and

! _: liT RESEARCH INSTITUTE
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transferred into the cavity of an aluminum molding tool, whose

surfaces have been sprayed with mold release.

The molding tool is shown in exploded view in Fig. 2

and assembled in Fig. 3. It consists of a lower and upper

platen, two side restraint bars, two end caps and two specimen

edge mold bars. Of the latter, the edges to be in contact

with the specimen (see Fig. 2) were machined into a concave

i semicylindrical surface. These edge bars are made in various

thicknesses, to accomodate specimens of various numbers of plies.

i "_ The two end caps contain central pressure pipes, one capped

blind and the other used to pressurize the silicone rubber tube

inside the specimen. All parts of the molding tool are assembled

and fastened tight by means of screws.
""

To prepare the mold assembly for specimen curing one

i end of the silicone rubber tube passing through the specimen is
f secured by means of a tightly fitting plug inside the pipe of the

i blind end cap. The other end of the rubber tube is similarly
V secured to the pipe of the pressurizing end cap by means of a

tightly fitting tubular plug. With the specimen inside the mold
[ cavity the two end caps are fastened into place to the I¢-,er platen.

"" Next, the upper platen is fastened into place forcing the specimen

! into initial conformity to the flattened tube shape of the mold

cavity. The end caps are next secured to the upper platen. The

molding tool, now fully assembled, Fig. 3, is then bagged for

i _ vacuum application to the specimen during cure.

i_ Prior to curing air pressure at 1380 kPa (200 psi) is

14 applied through the rubber tube to force the specimen against the

I L _ mold cavity. The specimen is heated to 399 degK (150°F) and held
at this temperature at the above pressure for approximately 6

hours prior to the application of the full curing cycle. This

long-time pressurization at a moderate temperature allows the

D specimen to creep into its final shape against the tool cavity

liT RESEARCH INSTITUTE
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wall before final curing. Curing is done by raising the

'" temperature at a gradual rate of approximately 2.8 degK (5°F)

per minute to the reconlnended cure temperature of 450 degK

(350°F) for the present epoxy matrix (PR 286 resin, made by the !

3M Company) while maintaining the specimen internal pressurization _

•' and applying vacuum to the bag enclosing the specimen. The

cure temperature, pressure and vacuum are maintained for one

hour for full cure. After cure the pressure and vacuum are

released, the tool allowed to cool to room temperature and the

"" specimen removed from the tool at the end of the cooldown period.

After the rubber tube is extracted and the specimen is visually

inspected for quality and accepted, its ends are trimmed and end

tabs provided to make it into a tensile test specimen.

2.3 Specimen Loading Tabs _!

All _pecimens were provided for tensile loading with

flat glass/epoxy gripping tabs of 7-ply crossply construction

bonde_ to the specimen ends on the flat outside surfaces. Cross-

plied glass/epoxy inserts, extending into the specimens a distance

equal to that of the outside tabs, were bonded inside the specimen °

ends. These inserts were installed to prevent specimen crushing !i

during tightening of the gripping jaws of the test machine. The i

adhesive used for the tabbing process was Scotch-Weld 1838 i;_
structural adhesive made by the 3M Company. ._

_:_ | Figure 4 shows the six tab sections comprising the

tabbing system and the specimen before the tab bonding operation.

•; The outer tabs have a 20- to 30-degree taper at the transition

end from tab to test section. The end inserts are both rounded

P and tapered at the transition end from insert to specimen test

section. These inserts are slightly undersized to accomodate

an adhesive layer for bonding. Tab and insert bonding is done

by putting a layer of adhesive on all mating surfaces, sliding
J
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the inserts in place into the tube ends, placing the flat

tabs on the specimen ends and clamping them in place by a set

of spring clamps until the adhesive cures. Figure 5 shows the i

tab sections assembled in place without adhesive. During the :_

!_. bonding operation the space around the rounded edges of the

specimen between the flat tabs is intentionally filled with

adhesive to promote load transfer through the edges during
i.

tensile testing. After the tab bonds are cured the tab sides

_L are sanded to the desired width, usually 2.54 cm (I in.).

i i

2.4 Reinforcing Techniques i

An initial batch of tensile test specimens was fabricated i
f_

"" and tested according to program requirements, some statically

and some under cyclic loading. A number of these specimens

failed near the tabs, especially in fatigue testing. It was

concluded that this type of failure could be avoided by proper

" reinforcement of the transition region between the tabs and

i , specimen test section.

Several reinforcing techniques were tried during the

_. progress of the project. Some were better than others and one

very promising technique did emerge. However, since it did not

always produce test section failures, it needs further refinement,

possibly in combination with improvements in the tabbing method, i

_ _ ,- The various reinforcement techniques which were tried are

!i_ described below._ For those tensile specimens which were already fabricated

i _ $ tab draping was used In this technique the tabs were generally
i , overdraped with two layers of PRD-49 graphite or glass/epoxy; i

i_ the layer in contact with the tab extending 1.26 cm (0.5 in.) into i

_: the test section beyond the tab and the next layer on top extending 1

! _ an additional 1.26 cm (0.5 in.) beyond that. Straight [0°] axial i

- liT RESEARCH INSTITUTE
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!

_:; draping and angle-ply [_30 °] and [±45 °] draping was tried. No
special advantage was found in the angle-ply draping. The

overdrape was applied in prepreg form to the tab area,

mechanically pressed in place by winding a wide silicon rubber

band around it and cured for I hour at 450 degK (350°F). Figure 6a

shows an overdraped tab. The visible transverse marks are

impressions due to the rubber band.

" , In a second reinforcing technique, two plies of prepreg

extending beyond the tab length are applied directly to the 1
i

outside surface of the specimen at the two ends and cured in place.

The flat tabs are then bonded onto them. Figure 6b shows such _

:_ an underdraped reinforced tab region •

_ A third reinforcing technique consisted of inserting '

i two extra 0-degree plies, 5.08 cm (2 in.) and 6.35 cm (2.5 in.)
_ long, between the outer continuous plies at both ends of the

_ & specimen, during specimen fabrication Specimen and reinforcement

were then cured together• The difference in insert length ! i!

produces a tapered transition. This mode of reinforcement is

! illustrated in Fig. i. Its advantage resides in the fact that the i !i

_o ends of the reinforcing plies are locked in making their delamination _1

and delamination propagation during loading more difficult than is i

, the case of external draping. The tabs are bonded to the

specimen in the usual way, and no overdraping is used.

A fourth reinforcement technique utilized the internal

reinforcement plus tab overdraping. This did not improve performance

and in case of fatigue it worsened it.

: _ Of all the reinforcing techniques tried the best results

_ were obtained with the use of internal reinforcement only. This

can possibly be further optimized by inserting one of the reinforcing

_, plies between the outer specimen plies and the second reinforcing

• _ ply between next pair of specimen plies.

liT RESEARCH INSTITUTE
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(6a) Overdraped Reinforced Tab
¢

i.

$

$

(6b) Underdraped Reinforced Tab Reglcn
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_ 3.0 TEST PROGRAM

i_" 3.1 Materials and Specimens

I Three materials were used for the specimens of the

_, program; S-glass/epoxy, PRD-49-111 (Kevlar 49)/epoxy and HT

[ grpahlte/epoxy. A single resin system, PR 286 made by the 3M

[ Company, was employed as the resin system for all three materials.

_ The materials were procured in continuous prepreg tape form.

l_i Flattened tubular angle-ply specimens of nine differentlayups were fabricated from the three basic materials as described

I in Table I. They consist of both single-material and two-material

:i hybrid specimens All layups were symmetric about the middle_ •

i _' surface with +45-degree outer plies and 0-degree center plies.

! there are two six-ply layups, six eight-ply layups and one twelve-

ply layup. Of these nine layups three are single-materlal and

six are hybrids

iy"
t Vn addition to the above layups, HT graphlte/epoxy

flattened _ubular specimens and flat coupons of [+45/0] s-
construction were fabricated. They were used for preliminary

:, static testing and strength comparison. Flat coupons of S-glass/

_ epoxy, PRD-49-1II/epoxy and HT graphite/epoxy of [+_45/02]s

construction were also fabricated for static testing and comparison

i of results with the corresponding tubular specimens listed in

_ | Table I. All flat coupons were nominally 2.54 cm (I in.) wide and

_ i 22.9 cm (9 in.) long with a 15.2 cm (6 in.) test section. They

were instrumented with two two-gage strain gage rosettes one on

"i_ii each side of the specimen along the centerline.

For all specimens used in the program, wall thickness

_i used in stress calculatlon_ were basad on nominal ply thicknesses_ as obtained from cured flat laminates fo the three basic materials.f
These thicknesses are:

_ P
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S-glass/epoxy - 0.013 cm (0.005 in.) per ply

,- PRD-49-1111epoxy - 0.017 cm (0.0065 in.) per ply

HT graphite/epoxy - 0.013 cm (0.005 in.) per ply

3.2 Instrumentation and Testing

The test program required that static tensile tests and i

tensile fatigue tests be conducted at room temperature on the

specimens outlined in Table I. For each lamizLate configuration

three specimens were to be tested statically and four specimens i

in fatigue.

To satisfy static test requirements, to determine

stress-strain curves and to detect extraneous bending, each

I L static specimen was instrumented with two two-gage strain gage

rosettes located centrally, one rosette on each flat side of

the specimen.

;. Each static specimen was tested to failure in all

Instron or Riehle testing machine. Strains were monitored and

recorded throughout the test at each load increment. Abnormal

behavior and failure modes, when noticeable, were recorded by

.t: approprlate remarks. Stress-straln curves were plotted from

the re,:or_d data and the following properties determined from

them:

Initial axial modulus, Exx

Poisson's ratio, Vxy

Axial tensile strength, Sxx T

Axial ultimate strain u
' _:XX$

Nonlinearities in the stress-strain curves whlc|_ could be associated

with material degradation during testing were looked for and

identified.

I
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5 Fatigue testing was done on a Sonntag Universal Fatigue

Test Machine. In accordance with test requirements each fatigue

specimen was subjected to tensile load cycling at the standard

rate of 30 cycles per second, at a stress ratio R = 0.1 and a

constant maximum load amplitude. The maximum load amplitude

for each test was selected in accordance with the requirement

that the specimen fail within the range of 5 x 105 to 107 cycles.

These load selections were made based on past experience with

fatigue _sting of S-glass/epoxy, PRD-49/epoxy and graphite/

epoxy flat coupon specimens. The load range for S-glass/epoxy

was selected below 25 percent of static strength. For PRD-49/

epoxy the range selected was below 55 percent and for graphite/

_ _poxy above 60 percent of static strength. For hybrids with S-
glass/epoxy, the load region selected was that for S-81ass/epoxy

and for hybrids with FRD-49/epoxy it was selected to be the same

as for PRD-49/epoxT.

Each test was run cot_tlnuously to failure or 107 cycles,

whichever occurred first. The continuous running avoided possible i
!

extranous damage from stop-restart transient loads. Maximum

stress amplitudes and cycles to failure were recorded, tabulated$
and S-N curves drawn. Those specimens which survived 107 cycles

were tested statically to failure to determine resldua_ properties, h

Instr_entation, testing and data analysis for these te_ts were

the same as for the static specimens.0

D

|
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4.0 RESULTS AND EVALUATION

4.1 Static Tests

Preliminary static testing of flattened tubular

specimens was done on HT graphite specimens of [+45/0]s
" construction. Failure modes of these specimens are shown in

Fig. 7. Stress-strain curves for two of these tests are

shown in Figs. 8 and 9_. Average properties obtained from

these data are: ii

Exx = 54 GPa (7.9 x !06 psi) __

u = 0.64 i
xy _i

SxxT = 450 MPa (65 ksi)

_ u -3 i
E = 8.4x i0 ._

For comparison purposes flat coupons of the same ii

material and layup were prepared and tested in uniaxial tension, ii

Stress-strain curves for these coupons are shown in Figs i0ie
_ and ii. Average properties obtained from these data are:

Exx 58 GPa (8.5 x l06 psi)

= 0.74
xy

SxxT = 418 MPa (61 ksi)

eu = 7.2 x 10-3
XX

Both the strength and ultimate strain in the flattened tubular

• specimens are somewhat higher than those in the flat coupons of

the same layup.

Static test results for the flattened tubular specimens

of the nine different layups of Table i are presented in Table 2.

Various tab reinforcing schemeswere used on these specimens as

D described before. The most successful one, that of inserting

liT RESEARCH INSTITUTE
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i'

reinforcing plies under the outer plies of the specimen was
|

conceived and applied late in the program. Consequently not

all static tests produced failures in the test section. Those

specimens which failed at the tabs or in close proximity to

them are indicated by an asterisk in the failure stress column

of Table 2. This type of failure most likely indicates that

the full strength of the specimen is higher than that obtained

in the test.

| Uniaxial static tension tests were also performed on

flat coupons of S-glass/epoxy, PRD-49-111/epoxy and HT graphite/

i epoxy of [_45/02] s construction. These were performed in order
to compare their static properties with those of corresponding

flattened tubular specimens. The results for these flat coupon

static tests, including those of the previously discussed HT

_ graphite/epoxy [_45/0] s coupons, are shown in Table 3.

i$ Typical failure modes of flattened tubular specimens

which failed in the test section are shown in Figs. 12 and 13.

i The stretch-pinch mode of failure illustrated in Fig. 13 was
characteristic of those specimens whose outer plies were either

+_45-degree S-glass/epoxy or PRD-49-111/epoxy. This failure mode

is a consequence of the continuous character of the +45-degree

fibers in an edgeless specimen. It is more pronounced for the

S-glass and PRD-49-111 fibers than for the HT graphite fibers

because the former have a much lower modulus and higher elongation

capability than the HT graphite fibers.

The stress-strain curves for three statically tested

flattened tubular specimens of [_45/02] s S-glass/epoxy are shownD
in Figs. 14, 15 and 16. All three specimens show mild nonlinear

behavior to failure. They all failed in the characteristic stretch-

pinch mode which was illustrated in Fig. 13. The failures occurred

partially in the test section and partially under the tab overdrape
D
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near one tab. All specimens showed close correspondence of

: properties as can be seen from the data in the figures. Average

property values for these specimens are:

Exx -- 37 GPa (5.3 x 106 psi)

v = 0.41
• xy

| Sxx T = 852 MPa (124 ksi)

_u = 30.0 x 10 -3xx

_ Stress-strain curves for the flat coupons of [+45/02] s

S-glass/epoxy are shown in Figs. 17 and 18. They exhibit

similar nonlinear stress-strain behavior to failure as the

corresponding flattened tubular specimens. Both coupons show

close correspondence of properties and failure loads as can be

i b seen from the data listed on the figures. Average property

_ _ values for the two specimens are:

ii,_ ,_

_ Exx = 37.5 GPa (5.45 x 106 psi)

= 0.42
xy

Sxx T = 943 MPa (137 ksi)

- u = 34.1 x 10 -3
iP _xx

.- Both the strength and ultimate strains of the flat

,,-_:,, coupons are higher than those for the flattened tubular specimens

_ This is contrary to what can be expected besed on the results

i obtained for the HT graphite/epoxy and PRD-49-111/epoxy specimens.

_'_ It has been caused most likely by nonoptimal tubular specimen

• quality combined with the nonoptimal tab reinforcement procedure,

as manifested by the failures occurring partially under the tab

ii': °ver_drapes ' liT RESEARCH INSTITUTE
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P The stress-strain curves for the three statically

tested flattened tubular specimens of [+_45/02]s PRD-49-111/

epoxy are shown in Figs. 19, 20 and 21. The specimens of

Figs. 20 and 21 show a small bend in the longitudinal strain

at about 103 to 138 MPa (15 to 20 ksi) of load, but otherwise

the longitudinal strains are linear. The bend probably

indicates early nonprogressive damage in the specimen. The

sharp change in curvature of the transverse strain in Fig. 20

is due to partial debonding of one of the transverse gages.

All three specimens failed in the characteristic stretch-pinch

mode partly in the test section and partly under the tab overdrape

_ near one tab. The average properties of these specimens are:

Exx = 43 GPa (6.2 x 106 psi)

= 0.78
xy

Sxx T = 662 _[Pa (96 ksi)

U
= 16.2 x 10 -3

XX

0 Stress-strain curves for the flat coupons of [+45/02] s
PRD-49-111/epoxy are shown in Figs. 22 and 23. They show nonlinear

stress-strain behavior to failure, and have close correspondence

of properties. Average values for the properties of the two

: p specimens are:2

_ Exx = 40.0 GPa (5.8 x 106 psi)

_xy = 0.84
D

Sxx T = 694 MPa (I01 ksi)

u = 17 5 x 10 -3
CXX
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These values are not significantly different from

those of the flattened tubular specimens. Final conclusions

cannot be drawn from these results since overdraping was

used as the tab reinforcing technique which did not prove to

be the best technique (see qection 2.4).

The stress-strain curves for the three statically tested

i flattened tubular specimens of [+_45/02]s HT graphite/epoxy are

_ shown in Figs. 24, 25 and 26. The stress-strain curves are

: linear to failure showing no early or progressive degradation

,_ _, of properties The low strength and modulus of the specimen of

i Fig. 26 is likely due to the fact that it was one of the early

• ," specimens made before the improved specimen fa__rication technique

• was introduced as described in Section 2.2. The average

properties of the three specimens are:

_ _ Exx -- 108 GPa (15.7 x 106 psi)

_ _ = 0.64

!, xy

_, Sxx T = 732 MPa (106 ksi)

u = 6 7 x i0-3
EKE •

:_ HT

I Stress-strain curves for flat coupons of [+45/02] s

;i_,P graphite/epoxy are shown in Figs. 27 and 28. As in the flattened

i' !! tubular specimens they are linear to failure. Average values for• their properties are:

'_ 106
_ Exx = 122 GPa (17.7 x psi)

_. v = 0.73
_, xy

: Sxx T = 707 MPa (103 ksi)

| cu = 5.9 x 10-3
_', XX?_,.
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t

It can be seen that the strength of the flattened

tubular specimens is higher than for the flat coupons,

although not significantly so. However, it is believed that

the higher strength is a systematic trend which would be
i

amplified with improved specimen quality. The same trend was

found for the [!45/0]s graphite/epoxy specimens.

| Figures 29, 30 and 31 show the stress-strain curves

for the hybrid flattened tubular specimens of [+45C/0G] s

HT graphite/S-glass/epoxy (C=graphite, G=S-glass). All

specimens had tab overdrapes as tab reinforcement and all

I failed at the tabs. Hence the full strength of the material

_ can be assumed to be higher than indicated by the test results.

The stress-strain curves are nonlinear. The severe nonlineareffect occurring after 241 MPa (35 ksi) in Fig. 31 is very

.. p likely due to specimen degradation. Average property values
for these specimens are:

E = 37 GPa (5 3 x 106 psi)
XX

D v = 0.65
xy

Sxx T = 421 MPa (61 ksi)

u = 14.7 x 10-3 (Figs 29 and 30 only)_XX "

¢ • Figures 32, 33 and 34 are the stress-strain curves for

the hybrid specimens of [_45C/02G]s HT graphite/S-glass/epoxy.
_ " The specimen of Fig. 32 failed in the test section. The other

I, two specimens failed at the tabs hence their strengths do notI
represent the effective strength of the material. The stress-

Ii strain curves are nonlinear to failure. In Fig. 32 some specimendegradation is evident after 517 MPa (75 ksi) from the more

severe changes in slope. The average property values for these
P

specimens are:
liT RESEARCH INSTITUTE
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i

!

il

",(I Exx = 39 GPa (5.6 x 106 psi)

+ _ = 0.59
i xy

i Sxx T -- 632 (92 ksi) (Fig. 32 only)

_ D cu = 21.3 x I0 -3 (Figs. 32 and 33)
XX

The stress-strain curves for the hybrid flattened tubular

_i specimens of [+_45P/02G]s PRD-49-111/S-glass/epoxy (P=PRD-49-111)

are shown in Figs. 35, 36 and 37. The specimens of Figs. 35 and

36 failed in the test section, that of Fig. 37 failed at the tab.

The stress-strain curves are nonlinear to failure. The sudden i

change in transverse s_rain manifested in Fig. 37 is likely due- !

L to instrumentation error since no corresponding effect is evident i

in the longitudinal strain. The average property values for these i

specimen_ are :

Exx = 34 GPa (4.8 x 106 psi) ;
! p i

, _ : 0.61 i
xy

• Sxx T -- 627 MPa (91 ksi) (Figs. 35 and 36) +

_ _u = 20.0 x 10-3 (Figs. 35 and 36)
': | xx ii

The stress-strain curves for the three hybrid flattened

tubular specimens of [+45P/04G]s PRD-49-III/S-glass/epoxy are

shown in Figs. 38, 39 and 40. The specimens of Figs. 38 and 39

_', | failed in the test section. For the specimen of Fig. 40 the tabs

'-+ debonded prematurely during the tes _ resulting in the low strength• recorded. Tab repair and retest of this specimen gave an even

._ lower strength indicating that the specimen was damaged during
:!; P its first tab failure. All three specimens show essentially linear

_, behavior to failure and close correspondence in modulus. A

..... slight knee can be discerned in the curves at stresses between

_ 138 and 207 MPa (20 to 30 ksi). Average values of the properties
it

_- , of these specimens are:
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E = 36 GPa (5.2 x 106 psi)
xx

= 0.51
xy

Sxx T = 905 MPa (131 ksi) (Fig. 38 and 39)

exx = 26.9 x 10 -3 (Fig. 38 and 39)U
P

The stress-strain curves for the three hybrid flattened

tubular specimens of [+45C/0 P] HT graphite/PRD-49-111/epoxy are

shown in Figs. 41, 42 and 43. All specimens had tab overdrapes

| as reinforcement and all failed at the tabs. These conditions

and failures are entirely similar to those of the HT graphite/S-

glass/epoxy hybrid specimens. They indicate that the tabbing

technique is more critical with hybrids with graphite outer layers

p than those with S-glass or PRD outer layer in contact with the

tabs. Since all three specimens failed at the tabs, the values

i obtained do not represent the full strength of the material. All

specimens show nonlinear behavior to failure without evidence

of intermediate degradation. Average values for theseP property

specimens are:

E = 44 GPa (6.4 x 106 psi)XX

p _ = 0.68
xy

Sxx T : 435 MPa (63 ksi)

eu = 12.1 x 10 -3
xx

, P Figures 44, 45 and 46 show the stress-strain curves for

_ ' the hybrid flattened tubular specimens of [_45C/02P]s HT graphite/

PRD-49-111/epoxy. Here again all specimens failed at the tabs

_ indicating the criticality of the tabbing technique in this type
P

of hybrid. Because of the failures at the tabs the test results

do not represent the full strength of the material. The stress-

strain curves are nonlinear to failure and show no intermediate

degradation. Average property values for these specimens are:
8
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P

Exx = 52 GPa (7.6 x 106 psi)

: 0.73
xy

P Sxx T = 567 MPa (82 ksi)
-3

Eu = 12.2 x i0
XE

4.2 Fatigue Tests

Table 4 shows the results obtained in the tensile

cycling fatigue tests performed on the flattened tubular specimens

of the nine different layups listed in Table I. As was the

'_ P case with the static tests and for similar reasons not all

specimens failed in the test section. Such specimens are

_ indicated by an asterisk in the "Cycles to Failure" column. In

i,_ those cases the true number of cycles to failure is most likely

_ P higher than that in test.obtained the

_,_ Most tab type of failures appear to have been caused

by tab overdrape or underdrape. This external tab reinforcement

had the tendency to have its exposed ends separate from theD

specimen as the cycling progressed. This gave rise to a mechanical

scrubbing and flapping action of the loosened draping against the

specimen, very likely resulting in local heating and weakening

of the specimen.b
_'_

Figures 47 through 55 show graphically the fatigue
i!

!" strength vs cycles to failure of the flattened tubular specimens. :_

They are based on the data of Table 4. The ordinates of the ii

_ _ graphs are presented in terms of percentages of static strength
i

where static strengths, listed on every graph, are the average

values reported in Section 4.1. All data points have been

! plotted regardless of type of failure. Curves have been drawn
b

: between the data points to indicate trends.

! liT RESEARCH INSTITUTE

, 70 :;

1976020273-079



L.

1976020273-080



1976020273-081



| ICO --

Static Strength 852 _a (12! ksi)
/

D 80--

Z

p _ 60--
L_

p o 40--

Z

D 20-

o j i J 'J

104 105 106 107

CYCLES TO FAILURE, N

!

Fig. 47 TENSILE CYCLING FATIGUE STRENGTH OF FLATT_r,NED TUBE

SPECIMENS OF [+-45/02]s £-GI._SS/EPOXY

73

1976020273-082



i

f

i!,
i

I t i0( _

Static Strength 662 MPa (96 ksi)

t 80 _

, _ 6o_

L)

p m 40_

O

f_
Z

u

20
| _ -

, o ,, _ , I ,, ,, ,I , J
, 104 105 i0_ -- ,, 107

CYCLES TO FAILURE, N

il Fig. 48 TENSILE CYCLING FATIGUE STRENGTH OF FLATTENED TUBE

SPECIMENS OF [+45/02]s PRD-III/EPOXY

74

1976020273-083



P

I00 --

j Static Strength 732 HPa (106 ksi)
80 -

_m

(.9
z

60--

L_

:' [--4

p m
_ 40-

" _ 20:--

I ,

' o I I Ji i m • i i ii

104 105 106 107 ".i

CYCI,ES 'fO FAILURE N _, J
t

?

)

Fig. 49 TENSILE CYCLING FATIGUE STRENGTH OF FLATTENED TUBE

_ HT- GP&PH ITE /EPOXYSPECIMENS OF [+45/02]s

75

F

1976020273-084



i00 _

Static Strength 421 _a (61 ksi)

80_

t

Z
60_

E--,

{J
H

r m 40__

:¢g, _

L)

:_" _ 20 _
m.,

t ,

o I I , , I
D 104 105 106 l0 T

a

CYCLES TO FEILURE, N

Fig. 50 TENSILE CYCLING FATIGUE STRENGTH OF FLATTENED TUBE
!

SPECIMENS OF [!45C/0G]s
HT- GRAPHITE/S-GLASS/EPOXY

76

L

1976020273-085



Ti

i00
p

J

Static Strength 632 MPa (92 k_i)

80
t

t3
;, Z

60

m 40_

O

u_ 20
) _ -

o ' _o_ _o_
4 D _ II I ii i ii __ i

104 105

CYCLES TO FAILURE, N

!

Fig. 51 TENSILE CYCLING FATIGUE STP_NGTH OF FLATTENED TUBE

SPECImeNS OF [+45C/02G]s_. HT-GRAPHITE/S-GLASS/EPOXY

1976020273-0RR



i00 -
!

Static Strength 627 MPa (91 ksi)

80_
)

Z

m; 60_

rj
i-4
[-4

< 03 40--

I o

20
) 1

0 I, , , i ..... I
)

, 104 105 106 107

CYCI.ES TO FAILURE, N

) Fig. 52 TENSILE CYCLING FATIGUE STRENGTH OF FLATTENED TUBE

SPECI.MENS OF [+45P/02G]s PRD-49/S-GLASS/EPOXY

' 78 ,_

L,,..jy. ...... _....___ ..................... 1976020273-087



i00 -

Static Strength 905 MPa (131 ksi)

" 80

P

o _,, , _ ,, ,,I I

104 105 106 107

CYCLES TO FAILURE, N

b_

Fig. 53 TENSILE CYCLING FATIGUE STRENGTH OF FLATTENED TUBE

OF [+45P/04G]s PRD-49/S-GLASS/EPOXY
SPECIMENS

79 IREPRODIJCI!_.__,_,,---., ,......

f,

1976020273-088



Static Strength 435 MPa (63 ksi)

P
80-

P
z 60-- O-_

u_

H

P <
40 --

O

Z

P
2C--

' ' , I 1......... I
104 105 I06 i07

_. CYCLES TO FAILURE, N

D Fig. 54 TENSILE CYCLING FATIGTTE STRENGTH OF FLATTENED TUBE I
,}

SPECIMENS OF [+45CIOP]s IIT-GP&PHITE/PRD-&9/EPOXY i

|

] 976020273-089



i00 ....

P

Static Strength 567 MPa (82 ksi)



t

In Fig. 47 for the [+_45/02]s S-glass/epoxy specimens

the data fall around the 25 percent of static strength limit

as expected.

P

Figure 48 presents the data for [_45/02] s PRD-49-111/

epoxy specimens. From past experience it was expected that the

data would fall below 55 percent of static strength, but the

specimens proved to be stronger. Since they all represent tab
P

failures the endurance limit must be even higher than indicated

il in Fig. 48. It would be of interest to compare this with the_! behavior of flat coupons of the same material. Based on past

_i experience with flat PRD-49/eDoxy coupons (different resin) the
,iil| region should be below 55 percent. Hence the flattened tubular

_ specimens appear to have higher fatigue endurance_._

In Fig. 49 for the [!45/02] s HT graphite/epoxy specimens,

| it was expected that the data would fall above 60 percent of

_ static strength with a runout of 107 cycles at about 60 percent

_>_ of static strength, based on experience with similar graphite/

I_ epoxy material The flattened tubular specimens exceeded the%_

!_ P endurance limit expectation with a runout at 74 percent of

i static strength indicating superior endurance over flat coupons.

It would be of interest to verify this against flat coupons of
the same material.

50 shows the data for [!45C/0G]sFigure HT graphite/

S-glass/epoxy. It appears that the data fall below 40 percent

of static strength rather than below 25 percent as expected from

the data for S-glass/epoxy shown in Fig. 47 and from past

experience. This may possibly be deceptive, since the data in

Fig, 50 are based on "static strength" of tab-failed specimens

rather than on true static strength, which must be higher.
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+45C/02 G ]I Figure 51 presents the data for [_ s HT
graphite/S-glass/epoxy specimens. Here too, the data were

expected to be governed by the usual behavior of the 0-

degree glass/epoxy plies and fall below the 25 percent of

P static strength. The data, however, indicate the upper

limit is nearer 40 percent of static strength and that the

endurance limit of 107 cycles is probably in the neighborhood

. of 30 percent of static strength. Whether this unexpected

p superior performance is due to the edgeless specimen

configuration, or the hybridization can only be established

by comparison with tests of corresponding flat coupons.

The values in Fig. 52 for the [+45P/02S]s PRD-49-111/)

S-glass/epoxy specimens were expected to fall below 25 percent

of static strength based on past experience with S-glass/

_ epoxy. The upper limit of the region is closer to 30 percent
iv

p of static strength and superior to the pure S-glass/epoxy

_ specimens of F_g 47• .

Figure 53 presents the data for [+45P/04G]s PRD-49-

i Ill/S-glass/epoxy. The behavior of this layup parallels the
P

results obtained for the related hybrid layup of Fig. 52 but

is closer to the results obtained for the pure S-glass/epoxy

specimen of Fig. 47 which may be due to the increased S-glass

content.

_ In Figure 54 for the [!45C/0P]s
HT graphite/PRD-49- III/

epoxy specimens it was expected that the data would be governed

i , by the PRD-49/epoxy behavior and fall below the 55 percent of

i _ suatic strength. The data shown fall instead below 70 percent
of static strength with a runout of 107 cycles at close to 60

percent of static strength. These results may be deceptive

since the actual static strergth may be higher than the one

, obtained here.
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°_ D Figure 55 presents the data for the [_45C/02P]s
._ HT graphite/PRD-49-111/epoxy specimens. The behavior is

i_ essentially the same as that of the similar hybrid of Fig. 54.

_L_Ip 4"3 Residual Properties

°_ Static tensile tests to failure were performed on

those flattened tube fatigue specimens which survived 107

cycles to determine their residual properties. Table 5 lists
D

properties. All specimens, except the [_45C/0P]s
these residual

specimen, failed at or near the tabs. The specimen which

failed in the test section did not have external draping as

_ tab reinforcement. The other surviving specimens had external

_ | draping. They must have sustained some damage near the tabs

but not sufficient to fail the specimens during the cycling.

At the higher loads applied during the static testing this

damage became critical and produced failures at the tabs.

Stress-strain curves to failure for the surviving

specimens are shown in Figs. 56 through 59. The [+_45/02]si
HT graphite/epo:-y specimen, Fig. 56, shows no intermediate

D degradation occurring during testing. The stress-strain curve

is linear to failure which also was the case for the static

specimens. The modulus and Poisson's ratio show no significant

deviation from the average values for the static tests. Hence

these material properties did not degrade due to cycling.

' Figure 57 shows the stress-strain curve for the

_ surviving specimen of [_45C/0G] s HT graphite/S-glass/epoxy.
The stress-strain to failure curve is nonlinear but not more

so than was the case for the static specimens. The modulus

and Poisson's ratio show no significant deviation from the

average values obtained for the static tests. Thus, these

material properties did not degrade due to cycling.
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Figure 58 shows the stress-strain curve for one

of the surviving specimens of [+_45C/02G]s HT graphite/S-

glass/epoxy. The nonlinear behavior to failure is essentially

the same as for the static specimens. Tt _ modulus is lower

than the average obtained for the static specimens but is
t

close to one of them. Hence the specimen modulus probably _i

did not degrade due to cycling. Poisson's ratio shows no

significant difference from the initial values.

_ t Figure 59 shows the stress-strain data for the surviving

- 0P]s _specimen of [_45C/ HT graphite/PRD-49-111/epoxy. The _

nonlinear behavior to failure is similar to that obtained for

the static specimens. The modulu_ and Poisson's ratio

show no significant differences from the average values obtained

for the static tests. The strength is, of course, higher than

for the static tests because the surviving specimen failed in

the test section and the static specimens did not. It can be

concluded that the material properties did not degrade due to

cycling.

|

i !
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5.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORKP

The objective of this program was to determine static I

and fatigue properties of three composite materials and hybrids !

thereof with edgeless cylindrical specimens. The materials i

t investigated were graphite/epoxy, S-glass/epoxy and PRD-49

(Kevlar 49)/epoxy in various angle-ply configurations.

A new type of edgeless cylindrical specimen was

i_ P developed. It is a flattened tube with two flat sides connected

by curved sections and it is handled much like the standard

flat coupon. A generally satisfactory fabrication technique

was developed. The prepreg plies are first zolled around a

| cylindrical rod mandrel then the mandrel is removed and a

silicone rubber tube inserted in its place. The specimen then,

wrapped with separator and bleeder layers, is inserted into a i

specially made molding _ooi a,_d pressurized internally against

| the mold, through the silicone rubber tube during the curing

cycle. Better results were obtained by bagging the whole

,_, assembly and applying vacuum, by increasing the internal

pressure to 1380 kPa (200 psi) and by introducing a procure

i_ P stage of 6 hours at 399 degK (150°F) with pressure.

Tabbing consisted of bonding two exterior glass/epoxy

tabs, identical to those used in flat coupons, and similar

D inserts bonded to the inside of the tube. It was found necessary

to provide additional reinforcement in the tab area of the
specimen. The most satisfactory reinforcement technique found

"_ consisted of inserting additional short plies between the

| continuous plies at both ends of the specimen during fabrication. !

, However, this reinforcing technique was introduced late in the

_i program and the number of specimens tested was not sufficient

for a definite assessment.
iI,

!i
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| Hybrid specimens tended to result in more tab

failures than other specimens of a single material. Proper

tabbing and reinforcement is thus more critical for hybrid

specimens.

Axial modulus, Poisson's ratio, strength and ultimate .ii

strain were obtained under static loading from flattened tube

specimens of nine laminate configurations. In a few cases i

| these results were compared with those of corresponding flat !_

coupon specimens. In the case of graphite/epoxy of [+45/0] s !

and [+_45/02]s layup the tubular specimens appeared to yield 'i

somewhat higher strength and ultimate strain values than flat i
| specimens. In the case of PRD-49-111/epoxy and S-glass/epoxy !

of [+45/02]s_ layup the results were inconclusive when compared !
with corresponding flat coupons. However, indications are

that with improved specimen quality and interply tab region

p reinforcement the tubular specimen will show higher strength, i

i between tubular and flat made for
No comparisons specimens were

the hybrid laminates.

All specimens containing S-glass/epoxy or PRD-49-111/
epoxy +_45-degree plies failed in a characteristic "stretch-

pinch" mode attributable to the deformations of the edgeless
i

specimen.

b Tensile fatigue tests were conducted with flattened

tubular specimens for all nine laminate configurations. ,_

i ,5

Rudimentary S-N curves were obtained from the few specimens _

tested. Although no direct comparison was made with flat '_

I coupons, indications are that in some cases the fatigue strength i!

i of tubular specimens is higher than might be expected from I_

•' previous experience with flat coupons. Definitive conclusions !,i

! will have to await further systematic testing of tubular specimens _

i! lit RESEARCH INSTITUTE ,_:i
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i and flat coupons of the same materials and layup.

i. Fatigue specimens which survived 10 7 cycles were
!

i subsequently tested statically to failure to determine residual

i properties. No stiffness or strength degradation was observed

in these tests.

_; The major contribution of this program has been

the development of fabrication and tab reinforcement techniques

* for an edgeless flattened tubular specimen. These techniques

._. have by no means been optimized and there is considerable room

'_ for improvement. One modification which is worth considering

is that of a commletely flattened tubular specimen. If that

specimen proves valid, then fabrication would be greatly
|

simplified. The possible advantages of the tubular specimen

would be more highlighted with an optimized and consistent

specimen fabrication technique.

| A systematic comparison of tubular and flat specimens

of the same material and layup is needed to properly evaluate

the edgeless specimen. Specimens of both [+45/02] s and

[02/!45] s layup, resulting in edge interlaminar normal stresses

| of opposite signs, should be investigated in this comparative

study. Two sufficiently large sets of tubular and flat specimens

should be compared on the basis of stress-strain resporse to

'! failure, static strength, cycles to failure and residual modulus

and strength after cyclic loading.

t
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